3-torsion in the homology of complexes of graphs of bounded degree

نویسنده

  • Jakob Jonsson
چکیده

For δ ≥ 1 and n ≥ 1, we examine the simplicial complex of graphs on n vertices in which each vertex has degree at most δ; we identify a given graph with its edge set and admit one loop at each vertex. δ = 1 yields the matching complex, and it is known that there is 3-torsion in degree d of the homology of this complex whenever n−4 3 ≤ d ≤ n−6 2 . We establish similar bounds for δ ≥ 2. Specifically, for δ = 2, there is 3-torsion in degree d of the homology whenever 5n−8 6 ≤ d ≤ n− 3. For δ ≥ 3, there is 3-torsion in degree d whenever (3δ−1)n−8 6 ≤ d ≤ δn−δ−6 2 and n ≥ 6δ. The situation for other pairs (d, n) remains unknown in general. To detect torsion, we construct an explicit cycle z that is easily seen to have the property that 3z is a boundary. Defining a homomorphism that sends z to a non-boundary element in the chain complex of a certain matching complex, we obtain that z itself is a non-boundary. In particular, the homology class of z has order 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topology of Matching, Chessboard, and General Bounded Degree Graph Complexes

We survey results and techniques in the topological study of simplicial complexes of (di-, multi-, hyper-)graphs whose node degrees are bounded from above. These complexes have arisen is a variety of contexts in the literature. The most wellknown examples are the matching complex and the chessboard complex. The topics covered here include computation of Betti numbers, representations of the sym...

متن کامل

k-forested choosability of graphs with bounded maximum average degree

A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...

متن کامل

ON THE VANISHING OF DERIVED LOCAL HOMOLOGY MODULES

Let $R$ be a commutative Noetherian ring, $fa$ anideal of $R$ and $mathcal{D}(R)$ denote the derived category of$R$-modules. For any homologically bounded complex $X$, we conjecture that$sup {bf L}Lambda^{fa}(X)leq$ mag$_RX$. We prove thisin several cases. This generalize the main result of Hatamkhani and Divaani-Aazar cite{HD} for complexes.

متن کامل

Five-torsion in the homology of the matching complex on 14 vertices

J.L. Andersen proved that there is 5-torsion in the bottom nonvanishing homology group of the simplicial complex of graphs of degree at most two on seven vertices. We use this result to demonstrate that there is 5-torsion also in the bottom nonvanishing homology group of the matching complex M14 on 14 vertices. Combining our observation with results due to Bouc and to Shareshian and Wachs, we c...

متن کامل

Complexity and approximation ratio of semitotal domination in graphs

A set $S subseteq V(G)$ is a semitotal dominating set of a graph $G$ if it is a dominating set of $G$ andevery vertex in $S$ is within distance 2 of another vertex of $S$. Thesemitotal domination number $gamma_{t2}(G)$ is the minimumcardinality of a semitotal dominating set of $G$.We show that the semitotal domination problem isAPX-complete for bounded-degree graphs, and the semitotal dominatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008